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Abstract. Starting from the time-independent Schrodinger equation for elastic scattering, 
a theory of wave-particle duality is developed which takes into account effects due to the 
quantum potential by means of a generalised ray equation. The duality between waves 
and particles is expressed in terms of two basic equations. Wave effects are described by 
a nonlinear amplitude equation which is coupled to a generalised ray equation that 
describes particle effects. The coupling between these two aspects of duality occurs by 
means of a function called the quantum expansion coefficient which describes the way in 
which a bundle of ray paths expand as the propagation distance increases. 

For systems in which the phase of the one-body wavefunction is a separable function 
of its coordinates, we derive simplified forms for the ray equations. As an example we 
show how the theory may be used to calculate tunnelling ray paths in planar electron 
channelling. The reflected rays in this case originate from beyond the classical turning 
points, thereby demonstrating the existence of a Goos-Hanchen effect in electron 
channelling. 

1. Introduction 

Since the birth of wave mechanics in 1926 a considerable amount of effort has been 
invested in developing classical causal interpretations of Schrodinger’s theory. The 
majority of these theories, apart from the statistical theories of Feynes (1952) and 
Nelson (1979), are based on the idea that the motion of the Schrodinger wave can 
be represented by a multitude of trajectories or rays. 

Much of the motivation for these theories comes from the inability of Schrodinger’s 
theory to explain wave-particle duality satisfactorily. 

The duality problem manifests itself in several practicnl situations-most notably 
in the areas of particle channelling in crystals (Chadderton 1966) and the propagation 
of light in optical fibres. 

In the case of particle channelling, where classical mechanics has proved to be 
very useful in describing the conditions necessary for channelling to exist (Chadder- 
ton 1970), there are problems related to the region of validity of classical mechanics 
and to how these conditions may be interpreted in terms of the standard wave theories 
of crystal diffraction (Cowley and Moodie 1957). More importantly, classical 
mechanics is incapable of describing tunnelling effects and other quantum phenomena 
which at present must be described by wave mechanics. 

In the case of optical fibre propagation? we have a similar situation in the sense 
that all the current ray treatments of fibre propagation are based on geometric optics 

t We are treating scalar optics on the same basis as time-independent wave mechanics because both 
situations are described by Helmholtz-type wave equations. 
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(Mikaelian 1980) and are therefore incapable of predicting situations where tunnelling 
through the wall of the fibre becomes important (leaky modes and evanescent boundary 
wave propagation). Also, as geometric optics ignores wave effects completely, any 
refractive index profile (e.g. Mikaelian 1980) calculated to provide self -focusing of 
the propagating beam may be expected to lose its validity as the wavelength becomes 
increasingly finite-due to diffraction effects. 

For these very practical reasons we have been motivated into developing a ray 
theory of wave propagation which reduces to geometric optics or classical mechanics 
in the limit of vanishing wavelength, and which for finite wavelengths reproduces all 
the results of scalar wave theory and wave mechanics. Most important of all, the 
theory is capable of describing tunnelling effects within a ray framework. 

From a practical point of view all the existing ray theories of wave mechanics and 
optics are not very useful when it comes to trying to describe tunnelling effects. WKB 
theory (Dunham 1932) and Keller’s geometric theory of diffraction (Keller 1978), for 
example, break down at caustics and the classical turning points. The main difficulty 
with the theories of Bohm (1952a’ b), de Broglie (1930) and Takabayasi (1952, 1953) 
seems to be that they are unnecessarily over-restrictive in the way they link particle 
concepts such as momentum to wave concepts such as phase. In Bohm’s and de 
Broglie’s theories, for example, the gradient of the phase of the wavefunction is 
assumed to be equal to the particle momentum, in analogy with classical Hamilton- 
Jacobi theory. 

In the theory developed in this paper, it is considered only that the ray paths are 
locally gauge invariant with respect to the original wave equation. By employing this 
principle of local gauge invariance of the ray path we obtain an alternative formulation 
of quantum mechanics in which wave-particle duality is given an explicit representation 
in terms of a generalised ray equation coupled to a nonlinear wave equation. The 
link between these two aspects of duality is provided by a function which we call the 
quantum expansion coefficient-in analogy with geometric optics where a function of 
similar form occurs (Kline and Kay 1965). The quantum expansion coefficient 
describes the way in which a bundle of ray paths expand, that is diffract. 

We shall now discuss the development of this new theory. 

2. Development of the theory 

We start from the time-independent scalar wave equation 

V2$ + k2(r )J /  = 0 

k2(r )  = (2m/ t i2 ) [~  - ~ ( r ) ]  

(1) 

where in the case of quantum mechanics 

( 2 )  

where V ( r )  is a real one-body potential. 
In the scalar optics case k 2  = k$n2 where n ( r )  is a real refractive index distribution 

and ko is the vacuum wavenumber. We now develop the theory for the case of 
quantum mechanics. Very few changes are necessary for the scalar optics case which 
is discussed in another paper (Lee 1982). 

We now introduce the well known ansatz $ = A  exp(iS/h) where for k’ > 0 A ( r )  
and S(r )  are real functions. The Schrodinger equation is then represented by the well 
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known equations 
VA 
A 

v 2 s + 2  - * vs = 0, 

V2A 
A 

IVSI2 = 2m(E - V) + ti -E Q2. 

(3) 

(4) 

Bohm’s, de Broglie’s and Takabayasi’s theories are based on the time-dependent form 
of these amplitude-phase relations. 

We now introduce a ray representation according to the prescription 

V S  = g(r) dr /da  ( 5 )  

where g(r)  is an arbitrary gauge function and d a  is an element of arc length in a 
conformal metric. 

We now define a point on a ray path in Cartesian coordinates by ~ ( z )  where z is 
the propagation coordinate and r = i x  + j y .  The gradient of the ray at r (z)  is denoted 
by t ( z )  where the dot denotes the total derivative with respect to z.  

From (4) and ( 5 )  we therefore have 

2 1/23 
dg - Q B 
do g ( l + i )  

d A Q  A 
d a  g (1+f ) 
-=- 

2 1/2‘ 

Using equations (4)-(6) we obtain from (3) the result 

d/[ln(A2Q)]/dz = -V [i/(l+ 12)1/2](1 + f2)’/’. (10) 

Note that this result is independent of the gauge function g(r). 

equation 
Finally, integrating (10) using the definition of Q, we obtain the nonlinear wave 

v2A + k2A - c Y * K ~ A - ~  = 0 (1 1) 
where a is an integration constant and K is given by 

We call K the quantum expansion coefficient since it describes the way in which a 
bundle of rays expand as a function of r. 

The ray equation is calculated from the extremisation of the action integral 

L = - = i . V S = Q ( l + t  dS 2 ) 1/2 , 
dz 

S = (Y h 5 (1 + f 2 )  dz ‘ 
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Hence, for K = ~ ( r )  the quantum ray equation is given by 

- d (L ;) = [(i)’]’/’V (5). 
d r  A’ 

An expression for the gradient of the phase of the wavefunction follows from equations 
( 5 ) ,  (7) and (11): 

The time-independent quantum Hamilton-Jacobi equation is therefore given by 

From (12) and (16) we see that we can write the expansion coefficient in the form 

K = exp[ - J v * (m) vs [(i.~’]”’ dz]. 

Equations (ll),  (14), (15), (16), (17) and (18) form the basic set of equations for 
our time-independent theory of wave-particle duality. 

It is important to emphasise here that this basic set of equations is independent 
of the gauge function g ( r ) .  If we were to try and repeat this procedure starting from 
the time-dependent Schrodinger equation, we would find that the ray equations were 
not independent of the gauge function-even if we introduce a gauge function for the 
time coordinate as well. The earlier hidden variable theories of quantum mechanics 
based on the time-dependent Schrodinger equation (e.g. Bohm, de Broglie, Takabay- 
asi, etc) are over-restrictive in the sense that they correspond to a particular choice 
of gauge function. 

In order to obtain a gauge invariant time-dependent theory of wave-particle 
duality, it is necessary to start from a wave equation which is symmetric in the order 
of the space and time derivatives. In a later paper, we hope to develop such a theory 
starting from the Klein-Gordon equation and show how it leads to a system of 
mechanics based on local masses. 

We now consider the classical limit of our time-independent theory. 

3. The classical limit 

One of the most interesting properties of equation (11) is the way it mirrors the 
approach to the classical limit. Consider the Lagrangian density corresponding to this 
equation: 

L =;[(TA)* - ( Y ’ K ~ ~ ( A ) ] ,  (19) 

~ ( A ) = ~ ’ A ~ + A - ~ ,  (20) 

where p = k / m .  The minimum points of the potential wells occur at 
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Substituting this value of ‘A’ into the generalised ray equation (15) gives 

(22) 
d - {[2m (E - V)]1’2fi = [ ( i )2]1 /2V[2m(E - V)]l/’ 

dz 

which is just the well known classical ray equation for elastic propagation. 

density potential function of the nonlinear amplitude equation. 

follows from equations (21) and (14): 

Hence, the classical limit corresponds to the minimum points of the Lagrangian 

The semiclassical wavefunction corresponding to the classical ray equation (22) 

where d7 = (1 + t2)1/2 dz is an element of Cartesian arc length. 
Apart from the constant a, which can be removed by renormalising the wavefunc- 

tion, equation (23) is just the first-order multidimensional WKB wavefunction as given 
by Ranfagni (1977). Multidimensional WKB wavefunctions have been shown to be 
particularly useful in constructing semiclassical treatments of elastic and inelastic 
atomic collision processes (Bates and Holt 1966, Chen and Watson 1968, Bates and 
Crothers 1970). The semiclassical theory of Bates and colleagues is particularly useful 
for calculating excitation cross sections with greater accuracy than standard impact 
parameter methods. It might be expected that the accuracy of these semiclassical 
theories could be further improved, particularly for low-velocity scattering, if the usual 
classical atomic trajectories were replaced by quantum trajectories. We hope to 
investigate this in detail in a later paper. 

4. Straight rays 

Straight ray solutions of the quantum ray equations (15) and (16) may be obtained 
in cases where the amplitude and phase functions, A and S, are functions of a single 
variable, y. 

If S =S(y), then we have, applying Jeffery’s method (Jeffery 1981) to the present 
problem, 

V S  = Vy dS/dy, (24) 

Now dy = Vy dr = Vyr‘ dz = Ivy1 lil cos I3 dz. For S = S(y), Vy is in the same 
direction as i since Qi(1 + j2)1/2 = (dS/dy)Vy. Therefore I3 = 0 and lil dz = dT = 
dY/lVY I .  
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For A =A(y)  the amplitude equation (11) takes the form 
2 

2 K (Y, Yo)  A - 3  = *, 
lVYI2 

A - @  
- d2A V2y dA k2(y) 

2 + - - + -  
dY IVY l 2  d r  IVrI2 

Hence for 'A' to be a function only of the single variable y we must have 

V2Y = f (Y), (28) 

lVY12 = dY), (29) 

where f(y) and g ( y )  are yet to be determined. 
Equations (28) and (29) have been studied by Collins (1976) who has shown that 

without loss of generality g ( y )  may be put equal to a constant and that the only real 
variable solutions in three dimensions are of the following forms. 

(i) f ( y ) = O  and y = l x + m y + n r + B  where 1 2 + m 2 + n 2 = L 2  and B is a constant. 
(ii) f(y) = l / y  and y = [ ( x  - x $ +  (y  - y1)2]1/2 with rotations and translations 

between x, y and z. x1 and y1 are constants. 
(iii) f ( y ) = 2 / y  and y = [ ( x - ~ ~ ) ~ + ( y - y ~ ) ~ + ( z - ~ ~ ) ~ ] ~ / ~  where x l ,  yl  and Z I  are 

constants. 
In the context of our theory these solutions correspond to plane, cylindrical and 

spherical wavefronts respectively. The corresponding quantum expansion coefficients, 
amplitude equations and phase functions are given by the following. 

(i) Plane wavefronts ( ~ ( 7 ,  yo) = 1): 

L 2 d 2 A / d y 2 + k 2 ( ~ ) A - ~ 2 A - 3 = 0 ,  (30) 

(ii) Cylindrical wavefronts ( ~ ( 7 ,  yo) = yo/ y ) :  

2 

- - r + - - + ~ 2 ( y ) ~ - a  d2A 1 dA 2 (-) Yo A - ~ = o ,  
d r  YdY Y 

S ( y )  = s o  + ayoh 
' dy' 

(iii) Spherical wavefronts (K(Y, yo) = ( y ~ / y ) ~ ) :  

(32) 

(33) 

The ray paths corresponding to these solutions may be calculated from (16). From 
(16) we have 
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It is a simple matter to verify that these expressions satisfy the ray equation (15) 

From equations (36)’ (37) and (38) we obtain the following expressions for the 

(i) Plane wavefront rays: 

exactly. 

ray paths. 

(ii) Cylindrical wavefront rays: 

(iii) Spherical wavefront rays: 

Hence in all cases the ray paths are straight lines perpendicular to the surfaces of 
constant phase which are planes, cylinders and spheres respectively-corresponding 
to planar, cylindrical and spherical equipotential surfaces. 

5. Rays corresponding to plane curves 

The next class of solutions we consider are those solutions corresponding to ray paths 
which are plane curves and correspond to phase functions which are separable functions 
of the propagation and transverse coordinates. 

Expressions for the ray paths are obtained by substituting into the general 
expression for the expansion coefficient separable forms for the phase function in 
terms of unknown functions and then solving for the unknown functions self- 
consistently. 

For example, consider the case where the equipotential surfaces are planar and 
are of the form V = V ( y )  where y = llx + l z y  = I  ,r. We wish to find the ray paths 
corresponding to the case 

A =A(r),  Slh = 132 +f(r), (42) 

v - (vs/~vs~) = i:,p/[i: + w)213/2 (43) 

where l3 is the longitudinal wavevector and f ( y )  is an unknown function. 

where the primes correspond to derivatives with respect to y. 
From (16) we have 

dx 11 - = - f a  dy 12 z=zf’ dz l3 

The element of Cartesian arc length is therefore given by 

(44) 
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Substituting (43) and (45) into the general expression (18) for the expansion coefficient 
and performing the integration by a change of variable, we obtain 

(46) I 2 112 K = A o [ l : / 1 2 + ( f )  1 / f ’  
where the constant iio is given by 

(47) 
I 2 112 -io=fb/[l:/!2+(fo) 1 . 

f o  andfb are the value of the function and its first derivative at the initial ray point x o ,  yo. 
The unknown function f(y) is now determined from equations (17), (42) and (46). 

The result is 

From (47) and (48) we therefore have 

df/dy/o = *[(a2/!2)A-4(yo) -l:/12]1’2. (49) 

The expansion coefficient, phase function and amplitude equation now take the 

( 5 0 )  

forms 

K = [.I: + ( I:/a2)A4]1’2, 

where 

V ( Y  1 = (k 2(r) - I :  M2, p 2  = (cu’/_12),2t, A o = * ( l - l : A ~ / ( ~ ~ ) ~ ’ ~ .  

Finally, the equation for the ray paths follows from equations (44) and (48): 

Hence, the ray paths are curves in the z ,  y plane. 
Equations (50) ,  (51), ( 5 2 )  and (53) are an appropriate set of equations for studying 

planar elastic channelling in crystals. In a later section we shall show how these 
equations may be used to calculate tunnelling ray paths in parabolic channelling. 

For cylindrical equipotential surfaces we may calculate a corresponding set of 
planar ray path functions. The procedure followed is similar to the previous case 
except that in this case y is replaced by p where p = ( x Z + y 2 ) * ’ * .  The expansion 
coefficient, phase function and amplitude equation are easily calculated and are given 

(54) 

by 

~ ( p ,  po) = [ T i / p 2  + (l:/a2)A4]”2, 

dp’  -- I,” m’ ’ ( ~ 7  z ,  - i3z +are 
h 

dZA 1 d A  E 2  
y+ - -+ V(p)A - 7 A - 3  = 0, 
dP P dP P 

( 5 5 )  
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where r0, E and U @ )  are respectively given by 

ro = *po[ 1 - (li/a2)A4(po)11/2, 

E =are, 
U ( p )  = k 2 ( p )  - I:. 

The corresponding ray path function is given by 

The above set of equations form an appropriate set for the study of meridional 
rays propagating through systems with cylindrical equipotential surfaces. 

The final example of a system with planar ray paths is provided by the case of 
central otential scattering. In this case we have Al(r, e )  = M,(p)N!(v) where p = 
r(2mE)"/h, v =cos e and M l ( p )  and Nl(v) satisfy the following radial and angular 
amplitude equations: 

7+-- 
d2Ml 2 dh4f 
dP P dP 

(1 - v  ) --T-2v--+ l(1+ 1 ) ~ ~  -2 N ; ~  = 0, 
1 2 d2Ni dNi 

dv dv 1 - v  

where I is the angular momentum quantum number and V ( p )  is a real one-body 
potential in dimensionless units. 

independent solutions of the radial Schrodinger equation, while Nf = (P: + Ql  ) 
where Pl and Ql are the linearly independent solutions of Legendre's equation. 

2 1/2 It is easily verified that MI = (R: + Ti ) where RI and TI arp, the two linear1 
2 1): 

Now, since RI, TI and PI, Ql satisfy the Wronskian relations 

RI dTi/dg -Ti dRJdp = 1/p2,  Pi dQl/dv - Ql dPl/dv = 1/(1- v2) ,  (62) 

it is easily shown that RI + iTl = Ml exp(imi) and PI + iQl = Nl exp(inf) where the radial 
and angular phase functions are given by 

J W O  J yo 

where po, vo defines an initial point. The total phase function corresponding to a 
scattering state of angular momentum 1 is therefore given by Sl(r, e )  = m,(p)+ni(v). 

We now substitute this expression for the total phase function and the correspond- 
ing expression for the total amplitude function Al(r, e )  = M,(p)Nl(v) into the polar 
coordinate form of the ray path relation (16). We then obtain two equations which 
when substituted into each other to eliminate the expansion coefficient and integrated 
result in the following ray path relation: 

M :  ( F )  dw = j' N: (v) dv. I:. yo 
(64) 

Equation (64) is the desired quantum ray relation for central potential scattering. The 
self-consistency of this result can be checked by substituting equation (11) into the 
mod square of equation (16) to obtain V2A + ( k 2 ( r )  - h-21VS12)A = 0. It is then easy 



2770 R A Lee 

to show that the amplitude function AI = Mfl, and the phase function SI = ml + nr 
satisfies this equation exactly. 

To conclude this section, we note that it is a simple matter to check that in each 
of the above three examples of planar ray paths the corresponding classical limit ray 
paths are given by the minimum point in the Lagrangian density potential function 
of the appropriate amplitude equations. 

We shall now give a simple application of the theory in the area of particle 
channelling in crystals. 

6. Tunnelling rays in parabolic channelling 

Consider the case of an electron channelling in a planar harmonic oscillator potential 
of the form 

V ( x ) =  U1X2-B (65) 

where U1 and B are constants. This type of potential has been suggested by Pantell 
and Swent (1979) as an appropriate potential for the study of thermal effects in the 
planar channelling of 56 MeV electrons in the (1 10) direction in silicon. The quantum 
ray paths, wavefunctions and eigenvalues are calculated as follows. 

Firstly, the nonlinear amplitude equation for the planar potential case (equation 
(52) with l2 = 0) is transformed into dimensionless form by a simple change of variable. 
The resulting equation is given by 

(66) d2F/dc2 - (a  + i t 2 )F  - ( ~ / T ) F - ~  = 0 

where ‘ U ’ ,  F and 5 are given by 

a = - (m/2u1h2)”2(E,+B),  A = { T C Y ~ ~ / [ ~ A ~ ( ~ ~ L J ~ ) ” ~ ] } ” ~ F  C 8 ,  

8 = ( 8 m U 1 / f ~ ~ ) ~ / ~ x ,  

where E ,  is the transverse energy of the channelling particle. 
The linear base equation-that is the amplitude equation without the F-3 term-is 

now of a standard form, the solutions being given by parabolic cylinder functions. In 
order to solve nonlinear equations of this form it is necessary to find two independent 
solutions of the linear base equation (Milne 1930, Pinney 1950). 

The solution of the nonlinear equation is now given by 

F(a ,  5) = CU2(a, 5) + V2(a ,  5)1”2 (67) 

where U(a,  6) and V ( a ,  5) are the parabolic cylinder functions (Abramowitz and 
Stegun 1965). 

The calculation of the phase function and the standard wavefunction is now quite 
straightforward. The phase function is given by 

6 

[ U 2 ( 4  5) + v2p, ell-’ d5 (68) I,, S l h  = l* (2/T)’I2 

where 5 = 132. The standard wavefunction is therefore given by 
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Now, since the parabolic cylinder functions obey the Wronskian relation 

W {  U, V} = (2/tr)’’2, 

$*(U,  5, t )  = CO exp[i(so+t)I[U(a, O*iV(a, 511 

(70)  

we can perform the integration and write the wavefunction in the form 

(71)  

where SO = tan-’[ V(a, t o ) /  U(a, 5011. 
Now, since the original Schrodinger equation is a linear equation, the determination 

of the physical eigenfunctions (that is, the wavefunctions which incorporate the 
boundary conditions) is just given by linear combinations of the standard wavefunc- 
tions. 

In this particular case, we require a wavefunction which asymptotes to zero at 
x = fa. Therefore, the physical eigenfunctions are given by U(a,  5 )  since V(a, 5 )  
diverges as x + fa. 

W a ,  5 , t )  = $+(a, 5 , t )  +$-(a,  t, 5 )  = 2C0 exp[i(so +t)lU(a,  5) .  (72)  

Now, U ( a ,  5) will only have the correct asymptotic behaviour and approach zero 
as t+ fa if the parameter ‘a’ is restricted to having only negative half-integer values. 
For a = - (n  +a) where n is a positive integer the parabolic cylinder function U(a,  5 )  
is related to the Hermite polynomials according to the relation 

U ( - [ n  +;I, 4) = 2-+ exp(-t2/4)~,,((/&). 

qn(5,  5 )  = N n  exp[i(so + 0 1  exp( - f2/4)Hn (t/./JZ) 

(73)  

(74) 

where the normalisation constant N,,( = 21-n’2C0) determines the parameter (Y from 
the condition 

The eigenfunctions are therefore given by 

From the half-integer condition on the parameter ‘a ’, we obtain the eigenvalue relation 

E,, = (n + $)hw - B, n = 0 , 1 , 2 , 3  , . . . ,  (76)  

where w = ( 2 U l / m ) 1 ’ 2  is the frequency constant. 
The above relations for the eigenvalues and eigenfunctions of the harmonic 

oscillator are of course well known. What is not known though is that corresponding 
to this set of eigenvalues and eigenfunctions is a set of eigenrays. The eigenrays for 
the planar harmonic oscillator are determined from equations (53)  and (67)  and are 
given by 

t 

6 
~ ( t )  = Lon + ci J’ [ U Z ( - n  -i, t)+ v 2 ( - n  -t, [)I d t  (77)  

where Ct = I : ( ~ h ~ / 1 6 m U ~ ) ” ~  and io, CO,, is the starting point of the ray in the channel. 
The eigenrays for parabolic channelling are plotted by numerically integrating the 

above equation using a table of parabolic cylinder functions (e.g. Abramowitz and 
Stegun 1965). As an example we have plotted the ray paths for the first excited state 
(n =1>. The ray paths are plotted in figure 1 (for one cycle) together with the 
corresponding classical (first-order WKB) ray path. In the quantum case we obtain 
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I 
12 

-4.0; 

Figure 1. Electron ray paths [n = 1) in parabolic channelling. Z1 = JiF't-1.5, 5') dc'. 
quantum Z1 = {,/Cl, . classical ray path, - - - - - - - quantum tunnelling ray path, - 

reflected ray path. 

tunnelling rays as well as reflectcd rc ys-reflection taken from the C point correspond- 
ing to the classical turning point in order for the exact ray path to match the WKB ray 
path away from the turning poiqt. The inability of classical mechanics to describe 
tunnelling effects is probably best understood from figure 2 which shons a plot of the 
integrand of equation (77) for n =: 1 ir, both the quantum and classical cases. As can 
be seen, the classical integrand diverges at the turning point. Higher-order WKB theory 
also diverges here because all the higher-order terms have the same singularity 
structure as the lowest-order term. On the other hand, the quantum integrand is well 
behaved (non-singular) at the turning point and therefore tunnelling through the 
caustic can occur. 

The shapes of the quantum and classical curves (ray paths and integrands) are 
only similar if we are far enough away from the turning points. This is just what 

1 2 t  

8r 

F 2  t 

:I 

point 

5 

Figure 2. Plots of the quantum (-) and classical (. . . .) integrands of equation (77) 
for the first excited state of the harmonic oscillator ( n  = 1; F2 ( -1 .5 ,  6)) .  
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would be expected from a simple WKB analysis. The advantage of this new theory 
though is that we are able to calculate the ray paths not just in the WKB region, but 
in every region of space, including the turning points. 

Note that the reflected rays in figure 1 originate from beyond the classical turning 
points. This provides theoretical evidence for the existence of a Goos-Hanchen effect 
in planar electron channelling (Goos and Hanchen 1947). This effect is well known 
in optics (Lotsch 1970) and has also been suggested for matter waves (Renard 1964), 
but does not seem to have been considered for the case of channelling. 

7. Conclusions 

In this paper, we have developed a theory of quantum ray equations appropriate to 
one-body non-relativistic elastic propagation. The theory treats wave effects and 
particle effects in a symmetric fashion and therefore may be regarded as a theory of 
wave-particle duality. 

It must be stressed here that the ray paths given by the theory are not physical 
ray paths in the sense of being physically measurable-just as the wavefunctions given 
by wave mechanics are not physical fields (according to the Copenhagen interpreta- 
tion). Physic?.; reality can only be applied to a statistical ensemble of ray paths in 
accordance with the statistical interpretation of the wavefunction. By this we mean 
that corresponding to each eigenstate of a dynamical system is an eigenray path 
through which the power flows. Therefore, just as it is impossible to predict which 
eigenstate the system will be in, so it is impossible to predict which eigenray the 
particles of the system will follow-hence diffraction. Therefore our theory of duality 
is completely consistent with the Copenhagen interpretation of quantum mechanics- 
we are not trying to ascribe a classical causal or deterministic interpretation to quantum 
mechanics. 
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